

The study of energy transfers and chemical reactions

Heat flow

Heat: the Energy that flows between any two objects at different temperatures that are in contact with each other.

From the higher T object to the lower T object

Two objects at the same T are said to be at "thermal equilibrium".

A + or - sign is used to show the <u>direction</u> of heat flow

<u>exothermic</u> changes ⇒ heat <u>leaves</u> the system

<u>endothermic</u> changes \Rightarrow heat is <u>gained by</u> the system

Thermal Properties

Properties of a substance that relate to its ability to absorb or release heat without chemically changing heat capacity

specific heat

Heat capacity (C)

The amount of heat that must move into an entire object to raise its temperature by 1°C units are J/°C or cal/°C specific for that <u>object</u> $\Box q = C \Delta T$

Specific heat (s)

The amount of heat that must move into 1.0g of a substance to raise its temperature 1°C units are J/g^oC or cal/g^oC specific for that substance, regardless of the amount

 $q = ms \Delta T$

m (mass) and s (specific heat) are ALWAYS POSITIVE numbers!
The sign on ∆T determines the sign on q

 T[↑], ∆T is (+), q is (+) → heat flows into the system (endothermic)

• $T \Downarrow, \Delta T$ is (-), q is (-) \rightarrow heat flows out of the system (exothermic)

The unit for heat called the *calorie* comes from the specific heat of liquid water

it takes 1.00 cal of heat to raise the T of 1.00 g of H₂O_(l) by 1°C
 remember, 1 cal = 4.184J

 $S_{H2O} = 1.00 \text{ cal/g}^{\circ}\text{C} = 4.184 \text{ J/g}^{\circ}\text{C}$

The larger the specific heat,... The "harder" it is to heat or cool a substance • The more heat that must flow to cause a ΔT the specific heat of water is relatively large \blacksquare it takes a lot of energy to "heat up" H₂O (1) the T) ■ the H₂O retains the heat well biological, climactic effects

q=ms Another perspective...

- Heat flow = energy = q...
 instead of "energy", think "money"
- The amount of a AT you can "buy" depends on how much q you can "spend"
- The specific heat (s) is like the "cost/item"
 The larger the s, the "more expensive" the ∆T will be
 - The more q it will "cost" you to "buy" the same size ΔT

Example problem

Cu has a specific heat of s = 0.387 J/g°C. How much heat is needed to be absorbed by 27g of copper to raise the T from 50°C to 70°C?

$\square q = ms \Delta T$

Example problem

How much heat is released if 250mL of water cools from 80°C to 25°C? (1.0 g = 1.0 mL)

 $\square q = ms \Delta T$

■q=(250g)(4.184 J/g°C)(-55°C)

_q = -57,530 J = -57.5 kJ

Example problem

What is the final T of 400mL of H₂O at 30°C if it absorbs 5 kJ of heat?

■ q = ms ΔT ■ +5000J=(400g)(4.184 J/g°C)(ΔT) ■ ΔT = +3°C ■ T_f = 33°C

A <u>calorimeter</u> is a device used to measure the ∆T for a reacting system

Often, filled with water to absorb or release heat

The apparatus (and any water within in) are part of the <u>SURROUNDINGS</u>

■ Because the heat is absorbed by or released mostly from the water, and a bit from the calorimeter, measuring △T of the water allows one to measure q for the reaction

Heat <u>out of system</u> = Heat <u>into surroundings</u>

 $q_{rxn} = -(q_{H20} + q_{cal})$ $q_{rxn} = -(ms\Delta T + C\Delta T)$

The study of energy transfers and chemical reactions